
19. J. J. Martin, W. McCabe, and C. C. Monrad, Chem. Eng. Prog., 47, 91-94 (1951). 
20. N. N. Suntsov, S. L. Demenok, and V. V. Medvedev, "Hydraulic resistance of regular 

spherical packings," Submitted to VINITI 14.12.88, No. 8766-B 88, Moscow (1988). 

WAVE REGIME OF CONSOLIDATION OF A POROUS COMPRESSIBLE 

MEDIUM 

N. N. Zhilyaeva and A. M. Stolin UDC 671.762 

An analytical solution in the form of a compression wave is found to the problem of 
the consolidation of a porous medium. Questions relating to the validity of the 
solution are examined. 

In the study of the problem of the consolidation of a viscous compressible medium in 
the theory of hot pressing [i, 2], it is customary to ignore the inertial and nonsteady 
terms in the equations of motion and to replace these equations by simpler conditions of 
equilibrium [3-5]. This simplication is usually connected with small Reynolds numbers Re. 
The smallness of Re for the hot pressing of hard alloys is based on approximate calcula- 
tions [4]. In this case, the initial variation of density in the material is important 
only in regard to the scale factor and has no effect on the character of the dependence of 
density on time. The perturbation from the piston is transmitted instantaneously to 
all discrete volumes of material. Such a consolidation regime has been called the regular 
regime [5]. 

Strictly speaking, the validity of ignoring inertial and nonsteady terms in the equations 
of motion depends not only on the smallness of Re, but also on the value of the partial deri- 
vatives of velocity with respect to the coordinates and time. At the same time, the inertia 
of the medium itself accounts for several fundamental characteristics of the process. It 
is important that the perturbation from the piston is not transmitted instantaneously to 
all discrete volumes in such media. Because this is the case, the preconditions are estab- 
lished for the formation of a compression wave in the porous medium. In connection with this, 
it is interesting to examine the problem of the compression of a porous medium with allowance 
for its inertia. In the present investigation, we seek to study the possibility of the occur- 
rence of consolidation regimes other than the regular regime by solving the problem in the 
form of a compression wave. Here, we make use of the concept of intermediate asymptotes 
[6]. The solution of the problem of the compression of a porous medium with allowance for 
inertial and nonsteady terms allowed us to find the necessary conditions for occurrence of 
the regular consolidation regime - the conditions under which we can ignore the inertia of 
the medium. It is shown that the realization of both transitional and wave regimes of con- 
solidation is possible. Distributions of density, velocity, and stress are found for materials 
which undergo consolidation in the wave regime. 

Formulation of the Problem. We will examine the axial compression of a viscous porous 
medium under the influence of a piston moving from right to left. The motion of the medium 
during its consolidation is described by the equations of continuity and motion together with 
rheological relations and boundary conditions 

op/ot + o (9u)/ox = o, (1) 

pp~ (OU/Ot + UOU/Ox) = O~/Ox, 
9 m 

Cl = (4~1/3 + ~) OU/Ox = % OU/Ox, 
t - - 9  

(2) 
(3) 
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o 0 = 4/3NI" Here, we take the following dependences for shear and bulkvisc0wity [3-5]: 
=NIp m, ~=4N(p)p/g(l--p). We will assume that the compressible medium is infinite and we 

will assign boundary conditions at x = • If the length of the product is sufficiently 
great, then such an approximation is valid. 

Let the material be stationary at x = -~ and let us assume that it does not undergo 
consolidation here: 

p ( - -  oo) = p0; U ( - -  oo) = 0. (4) 

At x = +=, we adopt the following conditions at the piston: 

o ( +  o o ) =  1; u ( +  oo) = u p  (5) 

for a regime with a specified velocity, 

o ( +  oo) = 1, ,~ ( +  ~ )  = N (6 )  

for a regime with a specified force. 

We will assume the existence of a compression wave moving through the material at a 
constant velocity c = const. By a wave solution to the problem, we mean a solution of the 
form f(x - ct). Let us change over to a moving coordinate system 6, �9 connected with the 
travelling wave: 

= x - - c t ,  T = t .  (7) 

In the new coordinates, the steady-state process of propagation of the compression wave 
is described by the system of equations 

O [o(U--c)]/O~ = 0, ( 8 )  

991 (U --c) OU/O~ = 0o/0~, ( 9 )  

9"  
= % ~ O U / O ~  (I0) 

1 - -  9 

with the boundary conditions 

~=--oo, P=90, U----O; 

$= § p=l, U=Up. 

For the regime with the specified force, instead of (12) we have 

~ = - + - o o ,  9 = 1 ,  ( ~ = N .  

(ii) 

(12) 

(13) 

Regime with Specified Piston Velocity. In this regime, Up = const. In this case, by 
integrating (8) with allowance for the boundary conditions, we find the velocity of the com- 
pression wave: 

c = Up/(1 - -  Po), (14) 
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i.e. the velocity of this wave is independent of the viscosity of the medium and is determined 
only by the velocity of the piston and the initial density of the material. It can be seen 
from (14) that the compression wave always precedes the piston, "running away" from it. 

We now introduce the quantity 

i = p(U--c) ,  (15) 

which is the flux in the moving coordinate system. Integrating (8), we find that the flux is 
the same at all points of the material: 

] = p(U--c) = Up--c =--p0c = const. 

Equation (16) can be rewritten as follows: 

(16) 

A p / p = U / c ,  - ( 1 7 )  

which is evidence of similitude relative to the change in density and the velocity field in 
the material. 

As a result of the integration of (9), we obtain 

(~ = p j U .  (18) 

Using rheological relation (i0), we find it easy to obtain the following implicit expression 
for density p(~) from (18): 

P 

o '  - -  p)] d p  - . . . .  p l c ~ / % ,  ( 1 9 )  ,! [O'~-J/(P-- ,  o,J(1 
O, 

where p.---~p(~-~0) Quantity p, can take arbitrary values on the interval (P0; i) due to the 
invariance of the wave solutions with respect to shear along the coordinate 6- 

We will henceforth use a linear dependence of shear viscosity on density (m = i). Then 
from (19) we obtain the density profile 

,o (~) ~ (f'o ~- a exp (Re~))/(i 4- a exp (Re ~) (20) 

and the corresponding profiles of velocity and stress 

v (~) = c + i /p  = 
U p a  exp (Re-~) 

Po 4- a exp (Re~) 

a (~) = % Upapo A exp (Re~)/(1 - -  Po)(a 4- exp (Re~i. 

( 2 1 )  

(22) 

Here, we have used the notation a = (@,--p0)/(l--p,), A = p~c(l--p0)/%, ~ = ~/Ho: where H 0 is 
length of the product. At $ = +~, we can use (22) to determine the force on the piston 

2 
(23) 

Regime with Specified Force on the Piston. In this case, the problem reduces to deter- 
mination of piston velocity from (18): 

Up = VINI (1 -- (~O)/POOl' (24) 
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Fig. I. Distribution of density 
over the coordinate $, calculated 
for a semifinished product 1 m 
long: a) with DI = 101~ Pa.sec; b) 
105; c) 104 . p is dimensionless; 

~, m. 

Here, the expressions for the distributions of density, velocity, and stress in the material 
coincide with those found earlier for the case of an assigned velocity (20-22). 

For a medium with a constant viscosity, i.e., in the case when rheological relation (3) 

has the form 

c~ = kOU/O~ (k = const), (25) 

the solution of system (8-13) 

U = exp []pl~/k - -  B] ( 2 6 )  

does not satisfy the boundary condition on the piston (B is the constant of integration). 
The lack of a wave solution to the problem in this case means that the compression wave owes 
its existence to the compressibility properties of the material -- more specifically, to the 
dependence of bulk viscosity on density. 

One issue that remains is to determine the range of application of the wave solution 
that has been found. One obvious prerequisite for the realization of a compression wave is 
that the characteristic dimension of the wave be small compared to the size of the material, 
i.e., 

6 ~ Ho, ( 2 7 )  

where 6 is the width of the wavefront (the length of the interval along the ~ axis in which 
density changes from P0 + s to 1 - g, where g is a small number). Using the expression for 
density (20), we can calculate the width of the wavefront for fixed values of piston velocity 
and the density and viscosity of the incompressible base: 

6 = - -  Ho In e2/Re = -- ~0 In e2/p~U . (28) 

It is evident from (28) that the density profiles differ in relation to the value of Re. 
Figure i shows profiles of density calculated from (20) with the following parameter values: 
P0 = 0.5; p, = 0.75; Pl = 5"103 kg/m3; Up = 102 m/sec; H 0 = 1 m; a = i; E = 0.01. Curves a, 
b, and c correspond to different values of viscosity of incompressible base ql- At 41 = 101~ 
Pa.sec, the width of the compression wave 6 - 105 m >> H 0 (Fig. la), i.e., condition (27) is 
violated. In this case, the solution found for the problem in [5] in Lagrangian coordinates 
is a good approximation of the actual solution and provides evidence of consolidation of the 
material in the regular regime. At Dl = I0~ Pa.sec (Fig. ic), condition (27) is satisfied: 
6 - i0 -~ m << H 0. The density profile that is constructed corresponds to the wave regime 
of consolidation. If NI = 10s Pa'sec, then the width of the consolidation front is comparable 
to the dimensions of the product: ~ - 1 m - H 0 (Fig. Ib), i.e., the consolidation front is 
"blurred." Thus, for the above-chosen parameters in the region of viscosity values 5.104 < 
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nl < 106, the indications are that neither the wave regime (6 << H0) nor the regular regime 
(6 >> H 0) exist, and Eqs. (20-22) fail to descibe the consolidation process. We can use the 
term "transitional" to describe this consolidation regime -- in which the compression wave 
becomes degenerate in the sense that velocity is not a constant value and the front itself 
erodes. This regime combines properties of both the wave regime and the regular regime. The 
boundaries of the transitional regime are to a certain extent conditional: the regime occurs 
where no regular or wave regime exists. In studies of the possibility of the occurrence of 
the wave regime in a material, consideration should be given to the final dimensions of the 
product and the limited pressing time. This is because the time and region of formation of 
the compression wave may in practice be so great that there is not sufficient time for the 
wave regime to materialize. It should be noted that the pressing time which is optimum for 
the consolidation of a product is determined as follows: 

. ~ H o / c "  (29) Tp 

In the case of incomplete conso l ida t ion  of the product,  i t  is  poss ib le  to determine the r a t i o  
of the consol idated po r t i on  to the unconsol idated po r t i on .  This r a t i o  is  equal to the r a t i o  
of the t ime of pressure app l i ca t i on  to the optimum pressing t ime: Tp/T~. 

Here, we have on ly  presented the necessary cond i t ion  fo r  the r e a l i z a t i o n  of wave regime 
(27).  Determinat ion of the s u f f i c i e n t  cond i t ions  requi res the so lu t i on  of the problem in the 
most general form: w i th  allowance fo r  the f i n i t e n e s s  of the product and the t rans ience of 
the conso l ida t ion  process i t s e l f .  I f  the problem were formulated in t h i s  manner, i t  would 
be poss ib le  to c l e a r l y  i nd ica te  the boundaries separat ing one regime from the other ,  de te r -  
mine the properties of the transitional regime, and examine questions dealing with the forma- 
tion of the consolidation front. 

NOTATION 

t, x and ~, 6, time and running length in the stationary and moving coordinate systems, 
respectively; o, U, stresses and velocities in the material; D, ~, shear and bulk viscosity 
of the material; Pl, Dz, density and viscosity of the incompressible base; P0, P, initial and 
running density of the material, referred to the density of its incompressible base; Up, N, 
velocity and force on the piston; c, rate of propagation of compression wave in the material; 
H0, size (length) of the material before consolidation; Tp, time of application of pressure 
(pressing time). 
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